
January 2014 FoxRockX Page 13

Consolidate data from a
fi eld into a list
This task is hard in VFP, but SQL Server provides two ways to do it.

Tamar E. Granor, Ph.D.

Some SQL commands were added to FoxPro 2.0
and I fell in love with them as soon as I started play-
ing	 around.	Over	 the	 years,	Visual	 FoxPro’s	 SQL	
subset has grown, but there are still some tasks that
are hard or impossible to do in VFP, but a lot easier
in	other	SQL	dialects.	 In	my	next	 few	articles,	 I’ll	
take a look at some of these tasks, showing you
how VFP requires a blend of SQL and Xbase code,
but SQL Server allows them to be done with SQL
code only.
One of the most common questions I see in online
VFP forums is how to group data, consolidating the
data	from	a	particular	fi	eld.	If	the	consolidation	you	
want is counting, summing, or averaging, the task
is	simple;	just	use	GROUP	BY	with	the	correspond-
ing aggregate function.

But if you want to, for example, create a com-
ma-separated	list	of	all	the	values,	there’s	no	SQL-
only way to do it in VFP. SQL Server, however, pro-
vides not one, but two, ways.

The VFP way
Using the Northwind database that comes with
VFP,	 suppose	 you	 want	 (probably	 for	 reporting	
purposes) to have a list of orders, with a comma-
separated list of the products included in each or-
der, something like what you see in Figure 1.

VFP’s	 SQL	 commands	 offers	 no	way	 to	 com-
bine the products like that. Instead, you have to run
a query to collect the raw data and then use a loop

to combine the products for each order. Listing 1
shows the code used to produce the cursor for the
fi	gure.

L isting 1. To consolidate data into a comma-separated list in
VFP requires a combination of SQL and Xbase code.
OPEN DATABASE FORCEPATH("Northwind", ;
 ADDBS(_samples) + "Northwind")

SELECT DISTINCT Orders.OrderID, ;
 Products.ProductName ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 JOIN Products ;
 ON OrderDetails.ProductID = ;
 Products.ProductID ;
 ORDER BY Orders.OrderID, ProductName ;
 INTO CURSOR csrOrderProducts

LOCAL cProducts, cCurOrderID
CREATE CURSOR csrOrderProductList ;
 (iOrderID I, cProducts C(150))

SELECT csrOrderProducts
cCurOrderID = csrOrderProducts.OrderID
cProducts = ''

SCAN
 IF csrOrderProducts.OrderID <> m.cCurOrderID
 * Finished this order
 INSERT INTO csrOrderProductList ;
 VALUES (m.cCurOrderID, ;
 SUBSTR(m.cProducts, 3))
 cProducts = ''
 cCurOrderID = csrOrderProducts.OrderID
 ENDIF

F igure 1. This shows each order from the Northwind database with a comma-separated list of the products ordered.

Page 14 FoxRockX January 2014

 cProducts = m.cProducts + ', ' + ;
 ALLTRIM(csrOrderProducts.ProductName)
ENDSCAN

The query uses DISTINCT because we only
want to include each product in the list once for
each order. It also sorts the results by OrderID,
which is necessary for the SCAN loop, and then by
name within the order, so the result has the prod-
ucts in alphabetical order.

The SCAN loop builds up the list of products
for a single order and then when we reach a new
order, adds a record to the result cursor and clears
the cProducts variable, so we can start over for the
new order.

The code in Listing 1	is	included	in	this	month’s	
downloads as VFPProductsByOrder.PRG

The SQL way
SQL Server offers two ways to solve this problem.
Each approach teaches something about elements
of	SQL	Server	that	don’t	exist	in	VFP’s	SQL,	so	we’ll	
look at each one.

We’ll	 use	 the	 sample	AdventureWorks	 (2008)	
database to demonstrate. To get an example analo-
gous to the VFP example, we can join the Purchase-
OrderDetail table to the Product table to get a list
of the products included in each purchase order, as
in Listing 2.

Listing 2. This query, based on the AdventureWorks database,
produces a list of products for each purchase order.
SELECT PurchaseOrderID, Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 On Production.Product.ProductID =
 PurchaseOrderDetail.ProductID
 ORDER BY PurchaseOrderID

We’ll	use	this	query	as	a	basis	for	getting	one	
record per purchase order with the list of products
comma-separated.

FOR XML
The	 first	 approach	 uses	 the	 FOR	 XML	 clause.	 In	
general, this clause allows you to convert SQL
results to XML. There are four variations of FOR
XML;	 three	 of	 them	 simply	produce	XML	 results	
and vary only in how much control you have over
the format of the result. For example, if you add the
clause FOR XML AUTO at the end of the query in
Listing 2, you get results like those in Listing 3.

Listing 3. Adding FOR XML AUTO to the query in Listing 2 pro-
duces this XML. (Only a few records are shown.)

 <Production.Product Name="Adjustable Race"
/>

 <Production.Product Name="Thin-Jam Hex Nut
9" />

 <Production.Product Name="Thin-Jam Hex Nut
10" />

 <Production.Product Name="Seat Post" />

 <Production.Product Name="Headset Ball
Bearings" />

Using FOR XML RAW, instead, produces one
element of type <row> for each record, with each
field	included	as	an	attribute.	Listing 4 shows the
first	few	records	of	the	result.

Listing 4. FOR XML RAW produces simpler XML.
<row PurchaseOrderID="1" Name="Adjustable
Race" />
<row PurchaseOrderID="2" Name="Thin-Jam Hex
Nut 9" />
<row PurchaseOrderID="2" Name="Thin-Jam Hex
Nut 10" />
<row PurchaseOrderID="3" Name="Seat Post" />

A third version, FOR XML EXPLICIT, gives you
tremendous control over the format of the output,
at the cost of writing a more complex query. The
details are beyond the scope of this article, and the
documentation indicates that you can do the same
things using FOR XML PATH much more easily.
However,	 if	 you’re	 interested,	 see	http://technet.
microsoft.com/en-us/library/ms189068.aspx.

The fourth version of FOR XML, using the
PATH keyword, provides what we need to consoli-
date the product data into a single record. FOR XML
PATH treats columns as XPath expressions. XPath,
which stands for XML Path language, lets you select
items in an XML document. Again, the full details
are beyond the scope of this article.

What you need to know to solve the problem of
creating a comma-separated list is that if you spec-
ify	FOR	XML	PATH(''),	the	expression	you	specify	
in the query is consolidated into a single list, rather
than one record per value. For example, the query
in Listing 5 produces the results shown in Listing 6.

Listing 5. Use FOR XML PATH('') to combine data into a single
string.
SELECT ', ' + Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = 7
 ORDER BY Name
 FOR XML PATH('')

Listing 6. The query in Listing 5 produces a single string.
, HL Crankarm, LL Crankarm, ML Crankarm

The query here assembles the list for a single
purchase order, due to the WHERE clause. The
ORDER BY clause makes sure the products are listed
in alphabetical order.

January 2014 FoxRockX Page 15

The	 field	 list	 in	 this	 case	 must	 either	 be	 an	
expression, as in the example, or must include the
clause:	AS	"Data()".	Otherwise,	you	get	XML	rather	
than	 a	 simple	 list.	 Since	 you’ll	 usually	want	 some	
punctuation	between	items,	this	isn’t	a	particularly	
onerous restriction.

However, the query in Listing 5	 doesn’t	 deal	
with duplicate products in a single order. To dem-
onstrate, specify 4008 as the purchase order ID to
match	rather	than	7	(because	order	4008	has	a	cou-
ple of duplicate products). When you do so, you
get the result shown in Listing 7.	 (I’ve	added	line	
breaks	to	make	it	more	readable;	 the	actual	result	
is one long string with no breaks. Note also that the
product names include commas, so it might actu-
ally be better to separate the items with something
else, perhaps semi-colons.)

Listing 7. The query in Listing 5 doesn’t remove duplicates.
, Classic Vest, L, Classic Vest, L,
Classic Vest, M, Classic Vest, M,
Classic Vest, M, Classic Vest, S,
Full-Finger Gloves, L, Full-Finger Gloves, M,
Full-Finger Gloves, S, Half-Finger Gloves, L,
Half-Finger Gloves, M, Half-Finger Gloves, S,
Women's Mountain Shorts, L,
Women's Mountain Shorts, M,
Women's Mountain Shorts, S

To remove the duplicates, we need to use a
derived table within this query, as in Listing 8. The
derived table extracts the list of distinct product names
for the purchase order and then the main query can
sort them. The derived table is required because using
DISTINCT	requires	the	field(s)	listed	in	the	ORDER	
BY	clause	to	be	 included	in	the	SELECT	list;	 in	this	
case,	 we’re	 sorting	 by	 Name,	 but	 the	 SELECT	 list	
includes	only	the	expression	(',	'	+	Name).

Listing 8. To have only distinct product names and be able to
sort them requires a derived table.
SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = 4008) DistNames
 ORDER BY Name
 FOR XML PATH('')

Listing 9 shows the results of the query in List-
ing 8.	As	before,	they’ve	been	reformatted	for	read-
ability.

Listing 9. With the more complex query in Listing 8, the results
don’t include duplicates.
, Classic Vest, L, Classic Vest, M,
Classic Vest, S, Full-Finger Gloves, L,
Full-Finger Gloves, M, Full-Finger Gloves, S,
Half-Finger Gloves, L, Half-Finger Gloves, M,
Half-Finger Gloves, S,
Women's Mountain Shorts, L,
Women's Mountain Shorts, M,
Women's Mountain Shorts, S

The next issue is the leading comma in the result.
To	remove	it,	we	use	the	STUFF()	function	,	which	is	
identical	to	the	VFP	STUFF()	function.	It	replaces	part	
of a string with another string. In this case, we want to
replace	the	first	two	characters	with	the	empty	string.	

However,	you	don’t	put	the	STUFF()	function	
quite where you might expect. It has to wrap the
entire query that produces the list. Listing 10 shows
the query that produces the list without the leading
comma.	Note	that	the	query	inside	STUFF()	has	to	
be wrapped with parentheses, just like a derived
table.	 (The	opening	parenthesis	 is	before	 the	key-
word SELECT, while the closing parenthesis fol-
lows	the	XML	PATH('')	clause.	That’s	followed	by	
the	additional	parameters	for	STUFF().)	

Listing 10. To remove the leading comma on the list, we wrap
the whole query with STUFF().
SELECT STUFF((SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = 7) DistNames
 ORDER BY Name
 FOR XML PATH('')), 1, 2, '')

We now have all the pieces we need to produce
results analogous to those in Figure 1. In the outer
query, we simply need to include the purchase
order’s	ID.	Listing 11 shows the query and Figure 2
shows part of the result, as displayed in SQL Server
Management	Studio	(SSMS).	This	query	is	included	
in	this	month’s	downloads	as	RollupOrdersForXML.
SQL.

Listing 11. Combining the query from Listing 10 with code to
include the purchase order number gives us the desired results.
SELECT PurchaseOrderID,
 STUFF((SELECT ', ' + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE Purchasing.PurchaseOrderDetail.Pur-
chaseOrderID
 = A.PurchaseOrderID) DistName
 ORDER BY Name
 FOR XML PATH('')), 1, 2, '') OrderProducts
 FROM Purchasing.PurchaseOrderDetail
 GROUP BY PurchaseOrderID
 ORDER BY 1

This	solution	is	included	in	this	month’s	down-
loads as RollupOrdersForXML.sql.

Using a function
The second approach to producing the desired list
uses a function that consolidates the list of prod-
ucts. The downside of this approach is that you
either have to have the function in the database
or	create	 it	on	 the	fly	and	 then	drop	 it	afterward.	

Page 16 FoxRockX January 2014

If you need the comma-separated list of products
regularly,	of	course,	there’s	really	no	reason	not	to	
add the function to the database.

The secret here is that the function accumulates
the list in a variable, which it then returns to the
main	query.	VFP	doesn’t	allow	you	to	store	query	
results to a variable, but SQL Server does, using the
syntax in Listing 12. You can even assign results to
multiple variables in a single query. The variables
must be declared before the query.

Listing 12. SQL Server lets you store a query result into a vari-
able.
SELECT @VarName = <expression>
 FROM <rest of query>

To create the comma-separated list, the expres-
sion on the right-hand side of the equal sign refer-
ences the variable on the left-hand side. The code
in Listing 13 shows how to do this for a single pur-
chase order. To display the results in SSSMS, add
SELECT @Products at the end of the code block.

Listing 13. The ability to store a query result in a variable
provides a way to accumulate the list of products for a single
purchase order.
DECLARE @Products VARCHAR(1000)

SELECT @Products =
 COALESCE(@Products + ',', '') + Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = 7
 ORDER BY Name

The	 COALESCE()	 function	 accepts	 a	 list	 of	
expressions	 and	 returns	 the	 first	 one	with	 a	 non-
null	value.	Since	@Products	is	initially	null	(because	
it’s	not	given	an	 initial	value),	on	 the	first	 record,	
COALESCE()	 chooses	 the	 empty	 string	 and	 the	
result	doesn’t	have	a	leading	comma.

As in the FOR XML PATH case, the query here
doesn’t	remove	duplicates.	The	solution	is	the	same	
here;	use	a	derived	query	to	produce	the	list	of	dis-
tinct products before combining them. Listing 14
shows the code that produces a sorted list of dis-
tinct products for one purchase order.

Listing 14. To include each product only once in the list, we
again use a derived query inside the query that assembles the
comma-separated list.
DECLARE @Products VARCHAR(1000)

SELECT @Products =
 COALESCE(@Products + ',', '') + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = 4008) DistNames
 ORDER BY Name

We can use this code in a function to return the
rolled-up list for a single purchase order. The main
query calls the function for each purchase order.
Listing 15 shows the full code for this solution.
Note that it creates the function, uses it and then
drops	it.	As	noted	earlier,	if	you’re	going	to	do	this	
regularly, just create the function once and keep it.

Listing 15. This solution to the problem uses a function that
rolls up the products for a single order.
CREATE FUNCTION ProductList (@POId INT)
 RETURNS VARCHAR(1000)
 AS
BEGIN
 DECLARE @Products VARCHAR(1000)

 SELECT @Products =
 COALESCE(@Products + ',', '') + Name
 FROM (SELECT DISTINCT Name
 FROM Production.Product
 Inner Join Purchasing.PurchaseOrderDetail
 As A
 On Production.Product.ProductID =
 A.ProductID
 WHERE A.PurchaseOrderID = @POId) DistNames
 ORDER BY Name

RETURN @Products
END
go

SELECT DISTINCT PurchaseOrderID,
 dbo.productList(PurchaseOrderID)
 AS ProductList
 FROM Purchasing.PurchaseOrderDetail
go

DROP FUNCTION dbo.ProductList
GO

Using DISTINCT in the main query ensures
that	we	see	each	purchase	order	only	once;	other-
wise, each would appear once for each included
product.

This	solution	is	included	in	this	month’s	down-
loads as RollupOrdersByFunction.sql.

Which one?
Given two solutions, which one should you use? In
my tests, the FOR XML PATH solution seems to be
faster. However, the dataset in AdventureWorks is
fairly small, so may not provide a good testbed. I
recommend testing both solutions against your ac-
tual data.

Figure 2. The query in Listing 11 produces this result.

January 2014 FoxRockX Page 17

If	 you	find	no	 significant	difference	 in	 execu-
tion,	then	use	the	one	that	you	find	easier	to	read	
and	comprehend,	since	you’re	likely	to	have	to	re-
visit it at some point.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books
including the award winning Hacker’s Guide to Visual

FoxPro, Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest collaboration
is VFPX: Open Source Treasure for the VFP Developer,
available at www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG	c/o	ISYS	GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone	+49-6173-950903
Fax	+49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2014 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the property
of	ISYS	GmbH	or	its	affiliates	or	third-party	licensors	and	which	is	protected	
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respective companies.

DOWNLOAD
Subscribers can download FR201401_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:

doughennig201401_code.zip
Source code for the article “Unit Testing VFP Applications, Part 1” from Doug Hennig

tamargranor201401_code.zip
Source code for the article “Consolidate data from a field into a list” from Tamar E. Granor, Ph.D.

whilhentzen201401_code.zip
Source code for the article “Data Munging with Python, Part 2” from Whil Hentzen

Authorenprofil
Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stone-
field Query; the MemberData Editor, Anchor Editor,
and CursorAdapter and DataEnvironment builders
that come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.
Doug is co-author of “Making Sense of Sedna and SP2,”
the “What’s New in Visual FoxPro” series (the latest
being “What’s New in Nine”), “Visual FoxPro Best
Practices For The Next Ten Years,” and “The Hacker’s
Guide to Visual FoxPro 7.0.” He was the technical edi-
tor of “The Hacker’s Guide to Visual FoxPro 6.0” and
“The Fundamentals.” All of these books are from Hent-
zenwerke Publishing (http://www.hentzenwerke.com).

He wrote over 100 articles in 10 years for FoxTalk
and has written numerous articles in FoxPro Advisor,
Advisor Guide to Visual FoxPro, and CoDe. He cur-
rently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Con-
ference (DevCon) starting in 1997 and at user groups
and developer conferences all over the world. He is one
of the organizers of the annual Southwest Fox confer-
ence (http://www.swfox.net). He is one of the adminis-
trators for the VFPX VFP community extensions Web
site (http://vfpx.codeplex.com). He was a Microsoft
Most Valuable Professional (MVP) from 1996 to 2011.
Doug was awarded the 2006 FoxPro Community Life-
time Achievement Award (http://tinyurl.com/ygnk73h).

continued from Page 5

